Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Plants (Basel) ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475500

RESUMO

Onopordum tauricum Willd., a species distributed in Eastern Europe, has been the subject of various research endeavors aimed at assessing its suitability for extracting vegetable rennet for use in the production of local cheeses as a substitute for animal-derived rennet. In Italy, the species has an extremely fragmented and localized distribution in six locations scattered across the central-northern Apennines and some areas of southern Italy. In this study, both the morphology and genetic diversity of the six known Italian populations were investigated to detect putative ecotypes. To this end, 33 morphological traits were considered for morphometric measurements, while genetic analysis was conducted on the entire genome using the ddRAD-Seq method. Both analyses revealed significant differences among the Apennine populations (SOL, COL, and VIS) and those from southern Italy (ROT, PES, and LEC). Specifically, the southern Italian populations appear to deviate significantly in some characteristics from the typical form of the species. Therefore, its attribution to O. tauricum is currently uncertain, and further genetic and morphological analyses are underway to ascertain its systematic placement within the genus Onopordum.

2.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671664

RESUMO

Nonadaptive hypotheses on the evolution of eukaryotic genome size predict an expansion when the process of purifying selection becomes weak. Accordingly, species with huge genomes, such as lungfish, are expected to show a genome-wide relaxation signature of selection compared with other organisms. However, few studies have empirically tested this prediction using genomic data in a comparative framework. Here, we show that 1) the newly assembled transcriptome of the Australian lungfish, Neoceratodus forsteri, is characterized by an excess of pervasive transcription, or transcriptional leakage, possibly due to suboptimal transcriptional control, and 2) a significant relaxation signature in coding genes in lungfish species compared with other vertebrates. Based on these observations, we propose that the largest known animal genomes evolved in a nearly neutral scenario where genome expansion is less efficiently constrained.


Assuntos
Peixes , Genômica , Animais , Austrália , Peixes/genética , Tamanho do Genoma , Seleção Genética
3.
Sci Rep ; 13(1): 13055, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567871

RESUMO

In the mountain terrain, ice holes are little depressions between rock boulders that are characterized by the exit of cold air able to cool down the rock surface even in summer. This cold air creates cold microrefugia in warmer surroundings that preserve plant species probably over thousands of years under extra-zonal climatic conditions. We hypothesized that ice hole populations of the model species Vaccinium vitis-idaea (Ericaceae) show genetic differentiation from nearby zonal subalpine populations, and high functional trait distinctiveness, in agreement with genetic patterns. We genotyped almost 30,000 single nucleotide polymorphisms using restriction site-associated DNA sequencing and measured eight functional traits indicative of individual performance and ecological strategies. Genetic results showed high differentiation among the six populations suggesting isolation. On siliceous bedrock, ice hole individuals exhibited higher levels of admixture than those from subalpine populations which could have experienced more bottlenecks during demographic fluctuations related to glacial cycles. Ice hole and subalpine calcareous populations clearly separated from siliceous populations, indicating a possible effect of bedrock in shaping genetic patterns. Trait analysis reflected the bedrock effect on populations' differentiation. The significant correlation between trait and genetic distances suggests the genetic contribution in shaping intraspecific functional differentiation. In conclusion, extra-zonal populations reveal a prominent genetic and phenotypic differentiation determined by history and ecological contingency. Therefore, microrefugia populations can contribute to the overall variability of the species and lead to intraspecific-driven responses to upcoming environmental changes.


Assuntos
Ericaceae , Vaccinium vitis-Idaea , Humanos , Vaccinium vitis-Idaea/genética , Gelo , Estações do Ano , Polimorfismo de Nucleotídeo Único
4.
Mol Ecol ; 32(17): 4777-4790, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452724

RESUMO

Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.


Assuntos
Orchidaceae , Áreas Alagadas , Ecossistema , Poliploidia , Aclimatação , Orchidaceae/genética
5.
Conserv Biol ; 37(6): e14133, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259604

RESUMO

Reduction in population size, with its predicted effects on population fitness, is the most alarming anthropogenic impact on endangered species. By introducing compatible individuals, genetic rescue (GR) is a promising but debated approach for reducing the genetic load unmasked by inbreeding and for restoring the fitness of declining populations. Although GR can improve genetic diversity and fitness, it can also produce loss of ancestry, hampering local adaptation, or replace with introduced variants the unique genetic pools evolved in endemic groups. We used forward genetic simulations based on empirical genomic data to assess fitness benefits and loss of ancestry risks of GR in the Apennine brown bear (Ursus arctos marsicanus). There are approximately 50 individuals of this isolated subspecies, and they have lower genetic diversity and higher inbreeding than other European brown bears, and GR has been suggested to reduce extinction risks. We compared 10 GR scenarios in which the number and genetic characteristics of migrants varied with a non-GR scenario of simple demographic increase due to nongenetic factors. The introduction of 5 individuals of higher fitness or lower levels of deleterious mutations than the target Apennine brown bear from a larger European brown bear population produced a rapid 10-20% increase in fitness in the subspecies and up to 22.4% loss of ancestry over 30 generations. Without a contemporary demographic increase, fitness started to decline again after a few generations. Doubling the population size without GR gradually increased fitness to a comparable level, but without losing ancestry, thus resulting in the best strategy for the Apennine brown bear conservation. Our results highlight the importance for management of endangered species of realistic forward simulations grounded in empirical whole-genome data.


Consecuencias en la aptitud y pérdida de ascendencia del oso pardo de los Apeninos después de un rescate genético simulado Resumen La reducción del tamaño poblacional, con los previsibles efectos sobre su aptitud, es el impacto antropogénico más alarmante sobre las especies amenazadas. Mediante la introducción de individuos compatibles, el rescate genético (RG) es una estrategia prometedora para reducir la carga genética revelada por la endogamia y restaurar la aptitud de las poblaciones en declive, aunque todavía se debate la eficiencia de esta. Aunque el RG puede mejorar la diversidad genética y la aptitud, también puede producir pérdida de ascendencia, lo que puede dificultar la adaptación local, o sustituir con variantes introducidas por los migrantes los acervos genéticos únicos que han evolucionado en grupos endémicos. En este trabajo realizamos simulaciones genéticas a futuro basadas en datos genómicos empíricos para evaluar los beneficios del RG en términos de aptitud y los riesgos de la pérdida de ascendencia en el oso pardo de los Apeninos (Ursus arctos marsicanus). Quedan aproximadamente 50 individuos de esta subespecie aislada que cuentan con una menor diversidad genética y un mayor nivel de endogamia comparado con otros osos pardos europeos y se ha sugerido que el RG podria reducir el riesgo de extinción de esta población. Comparamos 10 escenarios de RG en los que variaban el número y las características genéticas de los osos migrantes con un escenario sin RG con aumento demográfico causado por factores no genéticos. La introducción de 5 individuos procedentes de una población europea de oso pardo con mayor aptitud o niveles menores de mutaciones deletéreas que el oso pardo de los Apeninos produjo un rápido aumento de la aptitud del 10-20% en la subespecie y hasta un 22.4% de pérdida de ascendencia durante 30 generaciones. En las simulaciones sin un aumento demográfico, la aptitud empezó a disminuir de nuevo después de unas pocas generaciones. La duplicación del tamaño de la población sin RG aumentó gradualmente la aptitud hasta un nivel comparable al de algunos escenarios de RG, pero sin pérdida de ascendencia, por lo que parece ser la mejor estrategia para la conservación del oso pardo de los Apeninos. Nuestros resultados resaltan la importancia que tienen las simulaciones realistas a futuro basadas en datos empíricos del genoma completo para la gestión de especies amenazadas.


Assuntos
Ursidae , Humanos , Animais , Ursidae/genética , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genômica , Densidade Demográfica , Variação Genética
6.
Nat Commun ; 14(1): 1908, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019898

RESUMO

Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.


Assuntos
Phaseolus , Humanos , Phaseolus/genética , Variação Genética , Genótipo , Evolução Biológica , Hibridização Genética
7.
J Hered ; 114(3): 279-285, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36866448

RESUMO

The Aeolian wall lizard, Podarcis raffonei, is an endangered species endemic to the Aeolian archipelago, Italy, where it is present only in 3 tiny islets and a narrow promontory of a larger island. Because of the extremely limited area of occupancy, severe population fragmentation and observed decline, it has been classified as Critically Endangered by the International Union for the Conservation of Nature (IUCN). Using Pacific Biosciences (PacBio) High Fidelity (HiFi) long-read sequencing, Bionano optical mapping and Arima chromatin conformation capture sequencing (Hi-C), we produced a high-quality, chromosome-scale reference genome for the Aeolian wall lizard, including Z and W sexual chromosomes. The final assembly spans 1.51 Gb across 28 scaffolds with a contig N50 of 61.4 Mb, a scaffold N50 of 93.6 Mb, and a BUSCO completeness score of 97.3%. This genome constitutes a valuable resource for the species to guide potential conservation efforts and more generally for the squamate reptiles that are underrepresented in terms of available high-quality genomic resources.


Assuntos
Genoma , Lagartos , Animais , Cromossomos/genética , Genômica , Anotação de Sequência Molecular , Lagartos/genética , Cromossomos Sexuais
8.
Evolution (N Y) ; 16(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789285

RESUMO

With the advent of high-throughput genome sequencing, bioinformatics training has become essential for research in evolutionary biology and related fields. However, individual research groups are often not in the position to teach students about the most up-to-date methodology in the field. To fill this gap, extended bioinformatics courses have been developed by various institutions and provide intense training over the course of two or more weeks. Here, we describe our experience with the organization of a course in one of the longest-running extended bioinformatics series of workshops, the Evomics Workshop on Population and Speciation Genomics that takes place biennially in the UNESCO world heritage town of Ceský Krumlov, Czech Republic. We list the key ingredients that make this workshop successful in our view, explain the routine for workshop organization that we have optimized over the years, and describe the most important lessons that we have learned from it. We report the results of a survey conducted among past workshop participants that quantifies measures of effective teaching and provide examples of how the workshop setting has led to the cross-fertilisation of ideas and ultimately scientific progress. We expect that our account may be useful for other groups aiming to set up their own extended bioinformatics courses.

9.
Mol Phylogenet Evol ; 180: 107677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572162

RESUMO

Studies on parasite biogeography and host spectrum provide insights into the processes driving parasite diversification. Global geographical distribution and a multi-host spectrum make the tapeworm Ligula intestinalis a promising model for studying both the vicariant and ecological modes of speciation in parasites. To understand the relative importance of host association and biogeography in the evolutionary history of this tapeworm, we analysed mtDNA and reduced-represented genomic SNP data for a total of 139 specimens collected from 18 fish-host genera across a distribution range representing 21 countries. Our results strongly supported the existence of at least 10 evolutionary lineages and estimated the deepest divergence at approximately 4.99-5.05 Mya, which is much younger than the diversification of the fish host genera and orders. Historical biogeography analyses revealed that the ancestor of the parasite diversified following multiple vicariance events and was widespread throughout the Palearctic, Afrotropical, and Nearctic between the late Miocene and early Pliocene. Cyprinoids were inferred as the ancestral hosts for the parasite. Later, from the late Pliocene to Pleistocene, new lineages emerged following a series of biogeographic dispersal and host-switching events. Although only a few of the current Ligula lineages show narrow host-specificity (to a single host genus), almost no host genera, even those that live in sympatry, overlapped between different Ligula lineages. Our analyses uncovered the impact of historical distribution shifts on host switching and the evolution of host specificity without parallel host-parasite co-speciation. Historical biogeography reconstructions also found that the parasite colonized several areas (Afrotropical and Australasian) much earlier than was suggested by only recent faunistic data.


Assuntos
Cestoides , Parasitos , Animais , Parasitos/genética , Filogenia , Cestoides/genética , DNA Mitocondrial/genética , Genômica , Filogeografia
10.
Nano Today ; 48: 101729, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536857

RESUMO

Reliable point-of-care (POC) rapid tests are crucial to detect infection and contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The emergence of several variants of concern (VOC) can reduce binding affinity to diagnostic antibodies, limiting the efficacy of the currently adopted tests, while showing unaltered or increased affinity for the host receptor, angiotensin converting enzyme 2 (ACE2). We present a graphene field-effect transistor (gFET) biosensor design, which exploits the Spike-ACE2 interaction, the crucial step for SARS-CoV-2 infection. Extensive computational analyses show that a chimeric ACE2-Fragment crystallizable (ACE2-Fc) construct mimics the native receptor dimeric conformation. ACE2-Fc functionalized gFET allows in vitro detection of the trimeric Spike protein, outperforming functionalization with a diagnostic antibody or with the soluble ACE2 portion, resulting in a sensitivity of 20 pg/mL. Our miniaturized POC biosensor successfully detects B.1.610 (pre-VOC), Alpha, Beta, Gamma, Delta, Omicron (i.e., BA.1, BA.2, BA.4, BA.5, BA.2.75 and BQ.1) variants in isolated viruses and patient's clinical nasopharyngeal swabs. The biosensor reached a Limit Of Detection (LOD) of 65 cps/mL in swab specimens of Omicron BA.5. Our approach paves the way for a new and reusable class of highly sensitive, rapid and variant-robust SARS-CoV-2 detection systems.

11.
Heredity (Edinb) ; 129(6): 317-326, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207436

RESUMO

The eco-evolutionary history of penguins is characterised by shifting from temperate to cold environments. Breeding in Antarctica, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, more ecologically similar to its sister species, the King penguin, is still an open question. As the Antarctic colonisation likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the relative quantification of the genomic signatures of selection, unique to each sister species, could answer this question. Applying phylogeny-based selection tests on 7651 orthologous genes, we identified a more pervasive selection shift in the Emperor penguin than in the King penguin, supporting the hypothesis that its extreme cold adaptation is a derived state. Furthermore, among candidate genes under selection, four (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold-adapted homeotherms, like the woolly Mammoth, while other 161 genes can be assigned to biological functions relevant to cold adaptation identified in previous studies. Location and structural effects of TRPM8 substitutions in Emperor and King penguin lineages support their functional role with putative divergent effects on thermal adaptation. We conclude that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms.


Assuntos
Spheniscidae , Animais , Spheniscidae/genética , Regiões Antárticas , Adaptação Fisiológica/genética , Filogenia , Genoma
12.
Evol Appl ; 15(9): 1344-1359, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187190

RESUMO

Assigning individuals to their source populations is crucial for conservation research, especially for endangered species threatened by illegal trade and translocations. Genetic assignment can be achieved with different types of molecular markers, but technical advantages and cost saving are recently promoting the shift from short tandem repeats (STRs) to single nucleotide polymorphisms (SNPs). Here, we designed, developed, and tested a small panel of SNPs for cost-effective geographic assignment of individuals with unknown origin of the endangered Mediterranean tortoise Testudo hermanni. We started by performing a ddRAD-seq experiment on 70 wild individuals of T. hermanni from 38 locations. Results obtained using 3182 SNPs are comparable to those previously obtained using STR markers in terms of genetic structure and power to identify the macro-area of origin. However, our SNPs revealed further insights into the substructure in Western populations, especially in Southern Italy. A small panel of highly informative SNPs was then selected and tested by genotyping 190 individuals using the KASP genotyping chemistry. All the samples from wild populations of known geographic origin were genetically re-assigned with high accuracy to the original population. This reduced SNPs panel represents an efficient molecular tool that enables individuals to be genotyped at low cost (less than €15 per sample) for geographical assignment and identification of hybrids. This information is crucial for the management in-situ of confiscated animals and their possible re-allocation in the wild. Our methodological pipeline can easily be extended to other species.

13.
Nat Rev Genet ; 23(8): 492-503, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136196

RESUMO

Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.


Assuntos
Carga Genética , Genética Populacional , Animais , Variação Genética , Genoma , Genômica , Endogamia , Mutação
14.
Mol Phylogenet Evol ; 168: 107399, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026429

RESUMO

Collared lemmings (Dicrostonyx) are cold adapted rodents, keystone animals in the tundra communities and the model taxa in studies of Arctic genetic diversity and Quaternary paleontology. We examined mitochondrial and nuclear genomic variation to reconstruct phylogenetic relationships among the Eurasian D. torquatus and North American D. groenlandicus, D. hudsonius and evaluate biogeographic hypothesis of the two colonization events of North America from Eurasia based on morphological variation in dental traits. The nuclear and mitogenome phylogenies support reciprocal monophyly of each species but reveal conflicting relationships among species. The mitogenome tree likely reflects ancient mitochondrial replacement between currently isolated D. groenlandicus and D. hudsonius. The nuclear genome phylogeny reveals species cladogenesis and supports the hypothesis that D. hudsonius with primitive and distinct molar morphology represents a relic of the first migration event from Eurasia to North America. Species widely distributed in the North American Arctic, D. groenlandicus, with advanced dental morphology originated from a later colonization event across the Bering Land Bridge. This study shows ancient mitochondrial capture between two Arctic species and emphasizes the importance of multilocus approaches for phylogenetic inference.


Assuntos
Genoma Mitocondrial , Animais , Arvicolinae , DNA Mitocondrial/genética , Especiação Genética , Genômica , Filogenia
15.
Mol Ecol ; 31(7): 1963-1979, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076968

RESUMO

Genome sequencing of spatially distributed individuals sheds light on how evolution structures genetic variation. Populations of Phellopilus nigrolimitatus, a red-listed wood-inhabiting fungus associated with old-growth coniferous forests, have decreased in size over the last century due to a loss of suitable habitats. We assessed the population genetic structure and investigated local adaptation in P. nigrolimitatus, by establishing a reference genome and genotyping 327 individuals sampled from 24 locations in Northern Europe by RAD sequencing. We revealed a shallow population genetic structure, indicating large historical population sizes and high levels of gene flow. Despite this weak substructuring, two genetic groups were recognized; a western group distributed mostly in Norway and an eastern group covering most of Finland, Poland and Russia. This substructuring may reflect coimmigration with the main host, Norway spruce (Picea abies), into Northern Europe after the last ice age. We found evidence of low levels of genetic diversity in southwestern Finland, which has a long history of intensive forestry and urbanization. Numerous loci were significantly associated with one or more environmental factors, indicating adaptation to specific environments. These loci clustered into two groups with different associations with temperature and precipitation. Overall, our findings indicate that the current population genetic structure of P. nigrolimitatus results from a combination of gene flow, genetic drift and selection. The acquisition of similar knowledge especially over broad geographic scales, linking signatures of adaptive genetic variation to evolutionary processes and environmental variation, for other fungal species will undoubtedly be useful for assessment of the combined effects of habitat fragmentation and climate change on fungi strongly bound to old-growth forests.


Assuntos
Fluxo Gênico , Picea , Florestas , Fungos , Humanos , Metagenômica , Picea/genética
16.
PNAS Nexus ; 1(5): pgac211, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712379

RESUMO

Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.

17.
BioData Min ; 14(1): 51, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863217

RESUMO

BACKGROUND: With the increase in the size of genomic datasets describing variability in populations, extracting relevant information becomes increasingly useful as well as complex. Recently, computational methodologies such as Supervised Machine Learning and specifically Convolutional Neural Networks have been proposed to make inferences on demographic and adaptive processes using genomic data. Even though it was already shown to be powerful and efficient in different fields of investigation, Supervised Machine Learning has still to be explored as to unfold its enormous potential in evolutionary genomics. RESULTS: The paper proposes a method based on Supervised Machine Learning for classifying genomic data, represented as windows of genomic sequences from a sample of individuals belonging to the same population. A Convolutional Neural Network is used to test whether a genomic window shows the signature of natural selection. Training performed on simulated data show that the proposed model can accurately predict neutral and selection processes on portions of genomes taken from real populations with almost 90% accuracy.

19.
Nat Plants ; 7(2): 123-128, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558754

RESUMO

All crops are the product of a domestication process that started less than 12,000 years ago from one or more wild populations1,2. Farmers selected desirable phenotypic traits (such as improved energy accumulation, palatability of seeds and reduced natural shattering3) while leading domesticated populations through several more or less gradual demographic contractions2,4. As a consequence, the erosion of wild genetic variation5 is typical of modern cultivars, making them highly susceptible to pathogens, pests and environmental change6,7. The loss of genetic diversity hampers further crop improvement programmes to increase food production in a changing world, posing serious threats to food security8,9. Using both ancient and modern seeds, we analysed the temporal dynamics of genetic variation and selection during the domestication process of the common bean (Phaseolus vulgaris) in the southern Andes. Here, we show that most domestic traits were selected for before 2,500 years ago, with no or only minor loss of whole-genome heterozygosity. In fact, most of the changes at coding genes and linked regions that differentiate wild and domestic genomes are already present in the ancient genomes analysed here, and all ancient domestic genomes dated between 600 and 2,500 years ago are highly variable (at least as variable as modern genomes from the wild). Single seeds from modern cultivars show reduced variation when compared with ancient seeds, indicating that intensive selection within cultivars in the past few centuries probably partitioned ancestral variation within different genetically homogenous cultivars. When cultivars from different Andean regions are pooled, the genomic variation of the pool is higher than that observed in the pool of ancient seeds from north and central western Argentina. Considering that most desirable phenotypic traits are probably controlled by multiple polymorphic genes10, a plausible explanation of this decoupling of selection and genetic erosion is that early farmers applied a relatively weak selection pressure2 by using many phenotypically similar but genetically diverse individuals as parents. Our results imply that selection strategies during the past few centuries, as compared with earlier times, more intensively reduced genetic variation within cultivars and produced further improvements by focusing on a few plants carrying the traits of interest, at the cost of marked genetic erosion within Andean landraces.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/história , Domesticação , Fazendeiros/psicologia , Genoma de Planta , Phaseolus/genética , Argentina , Fazendeiros/estatística & dados numéricos , Variação Genética , Genótipo , História Antiga
20.
Mol Biol Evol ; 38(5): 1966-1979, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33386849

RESUMO

SARS-CoV-2 epidemics quickly propagated worldwide, sorting virus genomic variants in newly established propagules of infections. Stochasticity in transmission within and between countries or an actual selective advantage could explain the global high frequency reached by some genomic variants. Using statistical analyses, demographic reconstructions, and molecular dynamics simulations, we show that the globally invasive G614 spike variant 1) underwent a significant demographic expansion in most countries explained neither by stochastic effects nor by overrepresentation in clinical samples, 2) increases the spike S1/S2 furin-like site conformational plasticity (short-range effect), and 3) modifies the internal motion of the receptor-binding domain affecting its cross-connection with other functional domains (long-range effect). Our results support the hypothesis of a selective advantage at the basis of the spread of the G614 variant, which we suggest may be due to structural modification of the spike protein at the S1/S2 proteolytic site, and provide structural information to guide the design of variant-specific drugs.


Assuntos
COVID-19/genética , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA